
[1/2]

GORILLA–SEA CUCUMBER HASH
Implementation exercise

Description
We use hashing to compare

protein sequences in order to
learn if we are closer
(genetically) to a gorilla or a sea
cucumber. This problem can be
solved exactly and efficiently
using a technique called
“dynamic programming”, but
here we’ll settle for a simpler
and more brutal approach. (The
dynamic programming solution
is the topic of another exercise
that you may see in another
course.)

Inputs
The input files “HbB_FASTAs.in” contains proper data from a

protein sequence database. The file bestmovies.in contains
information on actors in some of the best movies ever.

Output
For each pair of organisms (movies), output a number

between 0 and 1 that describes their similarity, based on the
given strings. If you did everything right, organisms like
“human” and “gorilla” should be judged more similar than
“cow” and “sea cucumber.”

Requirements
You output will depend on your choice of hash function and

several parameters. Thus, I cannot provide sample output.
Thus, you’re on you own for evaluating the correctness of your
code.

At the very least, you need to include some kind of
documentation that you code for computing the length of a
vector, and the angle between two vectors works as expected.
For example, you can write a test method that calls your
“compute_angle” method on some known vector pairs.

T
ho

re
 H

us
fe

ld
t

(R
as

m
us

 P
ag

h)
20

10
 (

up
da

te
d

20
11

)

Data mining
Implement the similarity algorithm you find on the next page.

You can use whatever hash function you want, and play around
with parameters k and d until you get output that you are
biologically comfortable with. For me, k=20 and d=10000
works pretty well.

You may need to consult some kind of reference work to
remember (or learn) what a dot product is, and how to
compute |a|, the length of a vector.

>Human 2144721 HBHU 4HHB
MVHLTPEEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLG
AFSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVAN
ALAHKYH
>Human-sickle 2392691 2HBS
VHLTPVEKSAVTALWGKVNVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNPKVKAHGKKVLGA
FSDGLAHLDNLKGTFATLSELHCDKLHVDPENFRLLGNVLVCVLAHHFGKEFTPPVQAAYQKVVAGVANA
LAHKYH
...

Fi
rs

t f
ew

 li
ne

s
of

 H
bB

_F
AS

TA
s.

in
.

Th
e

H
um

an
 p

ro
te

in
 ta

ke
s

up

th
re

e
lin

es
, “

M
VH

L.
..K

YH
”.

Ig
no

re

th
in

gs
 li

ke
 “

21
44

72
1

H
BH

U

4H
H

B”
 —

 I
ha

ve
 n

o
id

ea
 w

ha
t

th
at

 s
tu

ff
ev

en
 m

ea
ns

.

[2/2]

Similarity test based on hashing
For integer k, a k-gram of a string is a

substring of length k. Every string of length n
has up to n–k such k-grams, but there may be
repetitions. For example, in “ABACADABRA”,
the 2-gram “AB” appears twice.

Choose a hash function h from the set of
k-grams to {0,…,d–1}. For example, in Java,
you could take String.hashcode() % d.
Given a string S, compute for each 0≤i<d the
value p[i] as the number of k-grams T of S for
which h(T) = i. The resulting array p is called a
profile of S. Two identical strings will have
exactly the same profile. More interestingly,
two similar strings will have similar profiles:
ABACADABRA and BABABLACKSHEEP both
contain “AB” the same number of times, both
of which contribute to the profile index
counting h(“AB”) % d. Assuming uniform
hashing, no other 2-grams are likely to get the
same hash value, so the profile index is
roughly the same.

So, two strings are similar if their profiles
are similar. Profiles are easier to work with
because they all have the same length: they
are sequences of exactly d integers. This puts
us on well-understood ground: sequences of d
integers can be viewed as vectors in d-
dimensional space, and they are similar if they
“point in the same direction, more or less.”

That’s the concept of angle: the angle a
between two vectors p and q is defined as a =
p·q/|p| |q|, where p·q is the dot product. of p
and q, and |p| is the length of p. The
trigonometric function cosine transforms the
angle into a number between 0 and 1 such
that cos a is close to 1 when the angle
between p and q is very small, so that p and q
are similar.

In summary: Fix d and k, and a hash
function. Compute the profile of a string by
counting the number of k-grams that map to
each hash value. Compare two strings by
computing the cosine of the angle of their
profiles.

Q: What role does hash
function play in the
algorithm? Why not just
compute the profiles of
the k-grams themselves,
instead of their hash
values?

A: This would indeed work.
In principle. The problem
is that the profiles
become too large. Assume
for a moment that there
are only 24 letters in the
alphabet. Then there are
24k different k-grams, and
your profile vector p
would be 24k-dimensional.
Good luck storing that on
your machine for k=20,
say! Also, most of the
entries in p would end up
being 0 anyway. With
hashing, you need only d
dimensions. So this is a
prototypical hashing
application: avoid storing
a (largely useless) sparse
table by hashing it into a
much smaller table without
losing too much
information.

WHY HASHING?

Q: What role does hash function play in the
algorithm? Why not just compute the profiles
of the k-grams themselves, instead of their
hash values?
A: This would indeed work. In principle. The
problem is that the profiles become too large.
Assume for a moment that there are only 24
letters in the alphabet. Then there are 24^k
different k-grams, and your profile vector p
would be 24^k-dimensional. Good luck storing
that on your machine! Also, most of the
entries in p would end up being 0 anyway. With
hashing, you need only d dimensions. So this
is a prototypical hashing application: avoid
storing a (largely useless) sparse table by
hashing it into a much smaller table without
losing too much information.

REALITY CHECK
Is this really how it’s done?
Well, close enough.
In particular, techniques for comparing documents (for
example to detect near-duplicates for web search engine
reporting, data mining, or fraud dectection) are based on
comparing hash values. The details are slightly different, and
if you want to read up on this, start with Wikipedia’s article
on min-wise independent hashing.
For comparing protein sequences, one normally uses a more
precise distance estimate called the Levenshtein distance,
sometimes called edit distance. For that particular distance
there’s actually a better algorithm called dynamic
programming, which works fast enough for such small inputs.
The same thing is used by your word processor’s spell
checker to find the word you meant to type.

